95 research outputs found

    A two-step method for retrieving the longitudinal profile of an electron bunch from its coherent radiation

    Full text link
    The coherent radiation emitted by an electron bunch provides a diagnostic signal that can be used to estimate its longitudinal distribution. Commonly only the amplitude of the intensity spectrum can be measured and the associated phase must be calculated to obtain the bunch profile. Very recently an iterative method was proposed to retrieve this phase. However ambiguities associated with non-uniqueness of the solution are always present in the phase retrieval procedure. Here we present a method to overcome the ambiguity problem by first performing multiple independent runs of the phase retrieval procedure and then second, sorting the good solutions by mean of cross-correlation analysis. Results obtained with simulated bunches of various shapes and experimental measured spectra are presented, discussed and compared with the established Kramers-Kronig method. It is shown that even when the effect of the ambiguities is strong, as is the case for a double peak in the profile, the cross-correlation post-processing is able to filter out unwanted solutions. We show that, unlike the Kramers-Kronig method, the combined approach presented is able to faithfully reconstruct complicated bunch profiles.Comment: 22 pages, 5 figure

    Phase-and-amplitude recovery from a single phase contrast image using partially spatially coherent X-ray radiation

    Get PDF
    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single material. A priori knowledge of the object's complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase contrast data measured with a laboratory-based micro-focus X-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise

    Statistical Image Reconstruction for High-Throughput Thermal Neutron Computed Tomography

    Full text link
    Neutron Computed Tomography (CT) is an increasingly utilised non-destructive analysis tool in material science, palaeontology, and cultural heritage. With the development of new neutron imaging facilities (such as DINGO, ANSTO, Australia) new opportunities arise to maximise their performance through the implementation of statistically driven image reconstruction methods which have yet to see wide scale application in neutron transmission tomography. This work outlines the implementation of a convex algorithm statistical image reconstruction framework applicable to the geometry of most neutron tomography instruments with the aim of obtaining similar imaging quality to conventional ramp filtered back-projection via the inverse Radon transform, but using a lower number of measured projections to increase object throughput. Through comparison of the output of these two frameworks using a tomographic scan of a known 3 material cylindrical phantom obtain with the DINGO neutron radiography instrument (ANSTO, Australia), this work illustrates the advantages of statistical image reconstruction techniques over conventional filter back-projection. It was found that the statistical image reconstruction framework was capable of obtaining image estimates of similar quality with respect to filtered back-projection using only 12.5% the number of projections, potentially increasing object throughput at neutron imaging facilities such as DINGO eight-fold

    Paraxial diffusion-field retrieval

    Full text link
    Unresolved spatially-random microstructure, in an illuminated sample, can lead to position-dependent blur when an image of that sample is taken using an incoherent imaging system. For a small propagation distance, between the exit surface of the sample and the entrance surface of a position-sensitive detector, the paraxial approximation implies that the blurring influence of the sample may be modeled using an anomalous-diffusion field. This diffusion field may have a scalar or tensor character, depending on whether the random microstructure has an autocorrelation function that is rotationally isotropic or anisotropic, respectively. Partial differential equations are written down and then solved, in a closed-form manner, for several variants of the inverse problem of diffusion-field retrieval given suitable intensity images. Both uniform-illumination and structured-illumination schemes are considered. Links are made, between the recovered diffusion field and certain statistical properties of the unresolved microstructure. The developed theory -- which may be viewed as a crudely parallel form of small-angle scattering under the Guinier approximation -- is applicable to a range of paraxial radiation and matter fields, such as visible light, x rays, neutrons, and electrons

    Contextual, Optimal and Universal Realization of the Quantum Cloning Machine and of the NOT gate

    Full text link
    A simultaneous realization of the Universal Optimal Quantum Cloning Machine (UOQCM) and of the Universal-NOT gate by a quantum injected optical parametric amplification (QIOPA), is reported. The two processes, forbidden in their exact form for fundamental quantum limitations, are found universal and optimal, and the measured fidelity F<1 is found close to the limit values evaluated by quantum theory. This work may enlighten the yet little explored interconnections of fundamental axiomatic properties within the deep structure of quantum mechanics.Comment: 10 pages, 2 figure
    corecore